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Abstract

The aim of the paper is to describe main achievements of John von Neumann in the
foundations of mathematics and to indicate his connections with Hilbert's School. In
particular we shall discuss von Neumann's contributions to the axiomatic set theory,
his proof of the consistency of a fragment of the arithmetic of natural numbers and his
discovery (independent of Gödel) of the second incompleteness theorem.

1 Introduction
Contacts of John (then still Janos, later Johann) von Neumann with David Hilbert and his
school began in the twenties of the 20th century. Being formally a student of the University
of Budapest (in fact he appeared there only to pass exams) he was spending his time in
Germany and in Switzerland studying there physics and chemistry as well as visiting Hilbert
in Göttingen (to discuss with him mathematics). After graduating in chemistry in ETH
in Zurich (1925) and receiving the doctorate in Budapest (1926) (his doctoral dissertation
was devoted to the axiomatization of set theory � cf. below), he became Privatdozent at
the University in Berlin (1927�1929), and next in Hamburg (1929�1930). In 1930 he left
Germany and went to the USA.1

∗The support of the Committee for Scienti�c Research (grant no. 1 H01A 042 27) is acknowledged.
1We are not describing further the life of von Neumann and stop at about 1930 because his disappointment

with the investigations in the foundations of mathematic let to the fact that after 1930 he lost the interest
in the foundational problems and turned his attention to other parts of mathematics, in particular to its
applications (see Section 4). Note only that in 1930�1931 von Neumann was visiting lecturer at Princeton
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Talking about Hilbert's School we mean the group of mathematicians around Hilbert
working in the foundations of mathematics and in the metamathematics (proof theory) in
the frameworks of Hilbert's programme of justi�cation of the classical mathematics (by
�nitistic methods).2

Main works of von Neumann from the period from 1922 (the data of his �rst publica-
tion) till 1931 concern mainly metamathematics as well as the quantum mechanics and the
theory of operators (also Hilbert worked at that time in just those domains). In this paper
we shall be interested in the former, i.e., works devoted to and connected with Hilbert's
metamathematical programme.

Recall (to make clearer further considerations) that one of the steps in the realization
of Hilbert's programme was the formalization (and in particular the axiomatization) of the
classical mathematics (this was necessary for further investigations of mathematical theories
by �nitistic methods of the proof theory).

Main achievements of von Neumann connected with the ideology of Hilbert's School are
the following:

• axiomatization of set theory and (connected with that) elegant theory of the ordinal
and cardinal numbers as well as the �rst strict formulation of principles of de�nitions
by the trans�nite induction,

• the proof (by �nitistic methods) of the consistency of a fragment of the arithmetic of
natural numbers,

• the discovery and the proof of the second incompleteness theorem (this was done
independently of Gödel).

The rest of the paper will be devoted just to those items.

2 Foundations of set theory
Contribution of von Neumann devoted to the set theory consisted not only of having proposed
a new elegant axiomatic system (extending the system of Zermelo-Fraekel ZFC) but also of
having proposed several innovations enriching the system ZFC, in particular the de�nition
of ordinal and cardinal numbers and the theory of de�nitions by trans�nite induction.

The de�nition of ordinals and cardinals was given by von Neumann in the paper �Zur
Einführung der trans�niten Zahlen� (1923) � it was his second publication. He has given
there a de�nition of an ordinal number which could �give unequivocal and concrete form
University in New Jersey, later a professor there. Since 1933 he was professor in the Institute for Advanced
Study in Princeton. He died in 1957 at the age of 54.

2There is a rich literature on Hilbert's programme � see, e.g., (Murawski, 1999) and the literature
indicated there.
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to Cantor's notion of ordinal number� in the context of axiomatized set theories (cf. von
Neumann, 1923). Von Neumann's ordinal numbers are � using the terminology of G. Cantor
� representatives of order types of well ordered sets. In (1923) von Neumann wrote:

What we really wish to do is to take as the basis of our considerations the
proposition: `Every ordinal is the type of the set of all ordinals that precede it.'
But, in order to avoid the vague notion `type', we express it in the form: `Every
ordinal is the set of the ordinals that precede it.' This is not a proposition proved
about ordinals; rather, it would be a de�nition of them if trans�nite induction
had already been established.3

In this way one obtains the sequence ∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}}, . . . � i.e., von
Neumann's ordinal numbers.

Those sets � as representatives � are in fact very useful, especially in the axiomatic set
theory because they can be easily de�ned in terms of the relation ∈ only and they are well
order by the relation ∈. They enable also an elegant de�nition of cardinal numbers. In the
paper (1928) one �nds the following de�nition: a well ordered set M is said to be an ordinal
(number) if and only if for all x ∈ M , x is equal to the initial segment of M determined
by x itself (as von Neumann wrote: x = A(x; M)). Elements of ordinal numbers are also
ordinal numbers. An ordinal number is said to be a cardinal number if and only if it is not
equipollent to any of its own elements.

In the paper (1923) von Neumann presupposed the notions of a well ordered set and of
the similarity and then proved that for any well ordered set there exists a unique ordinal
number corresponding to it. All that was done in a naïve set theory but a remark was added
that it can be done also in an axiomatic set theory. And in fact von Neumann did it in
papers (1928) and (1928a). To be able to do this in a formal way one needs the Axiom of
Replacement (in the paper (1923) von Neumann called it Fraenkel's axiom). Since that time
von Neumann was an staunch advocate of this axiom.

The problem of de�nitions by trans�nite induction was considered by von Neumann
in the paper �Über die De�nition durch trans�nite Induction, und verwandte Fragen der
allgemeinen Mengenlehre� (1928). He showed there that one can always use de�nitions by
induction on ordinal numbers and that such de�nitions are unequivocal. He proved that
for any given condition ϕ(x, y) there exists a unique function f whose domain consists of
ordinals such that for any ordinal α one has f(α) = ϕ(F (f, α), α) where F (f, α) is a graph
of the function f for arguments being elements of α.

3Wir wollen eigentlich den Satz: �Jede Ordnungszahl ist der Typus der Menge aller ihr vorangehenden
Ordnungszahlen� zur Grundlage unserer Überlegungen machen. Damit aber der vage Begri� �Typus� ver-
mieden werde, in dieser Form: �Jede Ordnungszahl ist die Menge der ihr vorangehenden Ordnungszahlen.�
Dies ist kein bewiesener Satz über Ordnungszahlen, es wäre vielmehr, wenn die tran�nite Induktion schon
begründet wäre, eine De�nition derselben.
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Why is the discussed paper so important? For many years, in fact since the axiomati-
zation of set theory by Zermelo, there were no formal counterparts of ordinal and cardinal
numbers and this was the reason of avoiding them in the axiomatic set theory. It became a
custom to look for ways of avoiding trans�nite numbers and trans�nite induction in mathe-
matical reasonings (cf., e.g., Kuratowski, 1921 and 1922). Von Neumann's paper introduced
a new paradigm which works till today. The leading idea of the paper was the will to give
set theory as wide �eld as possible.

The most important and known contribution of John von Neumann is undoubtedly a
new approach and new axiomatization of set theory. The main ideas connected with that
appeared by von Neumann already in 1923 (he was then 23!!!). He described them in a letter
to Ernst Zermelo from August 1923.4 He wrote there that the impulse to his ideas came
from a work by Zermelo �Untersuchungen über die Grundlagen der Mengenlehre. I� (1908)
and added that in some points he went away from Zermelo's ideas, in particular

• the notion of `de�nite property' had been avoided � instead the �acceptable schemas�
for the construction of functions and sets had been presented,

• the axiom of replacement had been assumed � it was necessary for the theory of
ordinal numbers (later von Neumann emphasized, like Fraenkel and Skolem, that it
is needed in order to establish the whole series of cardinalities � cf. von Neumann
1928a),

• sets that are �too big� (for example the set of all sets) had been admitted but they were
taken to be inadmissible as elements of sets (that su�ced to avoid the paradoxes).

About 1922�1923 while preparing a paper in which those ideas should be developed
he contacted Abraham Fraenkel. The latter recalled this (already after the death of von
Neumann) in a letter to Stanisªaw Ulam in such a way:5

Around 1922�23, being then professor at Marburg University, I received from
Professor Erhard Schmidt, Berlin (on behalf of the Redaktion of the Mathema-
tische Zeitschrift) a long manuscript of an author unknown to me, Johann von
Neumann, with the title �Die Axiomatisierung der Mengenlehre�, this being his
eventual doctor[al] dissertation which appeared in the Zeitschrift only in 1928
(vol. 27). I was asked to express my views since it seemed incomprehensible.
I don't maintain that I understood everything, but enough to see that this was
an outstanding work and to recognize ex ungue leonem. While answering in this
sense, I invited the young scholar to visit me (in Marburg) and discussed things
with him, strongly advising him to prepare the ground for the understanding of

4This letter was partly reproduced in Meschowski, 1967, 289�291.
5Letter from Fraenkel to Ulam in (Ulam, 1958).
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so technical an essay by a more informal essay which should stress the new access
to the problem and its fundament consequences. He wrote such an essay under
the title �Eine Axiomatisierung der Mengenlehre� and I published it in 1925 in
the Journal für Mathematik (vol. 154) of which I was then Associate Editor.

Before continuing the story let us explain that ex ungue leonem � spotting a lion from
the claw � is an expression used by Daniel Bernoulli while talking about Newton two and a
half centuries ago. Bernoulli was namely sent a mathematical paper without a name of the
author but he immediately recognized that it has been written just by Newton.

Von Neuman began the paper �Eine Axiomatisierung der Mengenlehre� (1925) by writing:

The aim of the present work is to give a logically unobjectionable axiomatic
treatment of set theory. I would like to say something �rst about di�culties
which make such an axiomatization of set theory desirable.6

He stressed explicitly three points mentioned in the letter to Zermelo.
The characteristic feature of the system of set theory proposed by von Neumann is the

distinction between classes, �domains� (Bereiche) and sets (Mengen). Classes are introduced
by the Principle of Comprehension � von Neumann seems to have regarded this principle as
the quintessence of what he called �naïve set theory� (cf. von Neumann 1923, 1928, 1929).
His appproach to set theory was strongly based on the idea of limitation of size according
to which: a class is a set if and only if it is not �too big�. The latter notion was described
by the following axiom:

(∗) A class is �too big� (in the terminology of (Gödel, 1940) � is a proper class)
if and only if it is equivalent to the class of all things.

Hence a class of the cardinality smaller than the cardinality of the class of all sets is a set.
Von Neumann states further that the above principle implies both the Axiom of Separation
and the Axiom of Replacement. It implies also the well ordering theorem (he indicated it
already in the letter to Zermelo). Indeed, according to the reasoning used in the Burali-Forti
paradox, the class On of all ordinal numbers is not a set, hence by the above principle it is
equipollent with the class V of all sets. In this way one obtains a strengthened version of
the well ordering theorem, namely:

The class V of all sets can be well ordered.

In the paper �Die Axiomatisierung der Mengenlehre� (1928a) [this was in fact a �math-
ematical� version of the system of set theory announced in the paper (1925)] von Neumann

6Das Ziel der vorliegenden Arbeit ist, eine logisch einwandfreie axiomtische Darstellung der Mengenlehre
zu geben. Ich möchte dabei einleitend einiges über die Schwierigkeiten sagen, die einen derartigen Aufbau
der Mengenlehre erwünscht gemacht haben.
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observed that the principle gives also a global choice function F such that for any nonempty
set A it holds: F (A) ∈ A.

The Axiom of Choice, being a consequence of (∗), enabled von Neumann to introduce
ordinal and cardinal numbers without the necessity of introducing any new primitive notions.
It was in fact a realization of the idea he wrote about in 1923. He used here the Fraenkel's
Axiom of Replacement.

Observe that the distinction between classes and sets appeared already by Georg Cantor
� he wanted to eliminate in this way the paradox of the set of all sets. Cantor used to call
classes �absolutely in�nite multiplicities�. But he gave no precise criterion of distinguishing
classes and sets � it was given only by von Neumann. The latter has also shown that
Cantor was mistaken when he claimed that the absolutely in�nite multiplicities (e.g., the
multiplicity of all ordinal numbers) cannot be treated as consistent objects.

In the original formulation of set theory by von Neumann there are no notions of a set
and a class. Instead one has there the primitive notion of a function (and of the relation
∈). Von Neumann claimed that it is in fact only a technical matter � indeed, the notions
of a set and of a function are mutually de�nable, i.e., a set can be treated as a function
with values 0 and 1 (the characteristic function of the set) and, vice versa, a function can
be de�ned as a set of ordered pairs.

Add that in the von Neumann's system of set theory there are no urelements � there
are only pure sets and classes. On the other hand among axioms there is the Axiom of
Foundation introduced by Dimitri Mirimano� in (1917).7 This axiom garantees that there
are no in�nite decreasing ∈-sequences, i.e., such sequences that . . . ∈ xn ∈ . . . ∈ x1 ∈ x0 and
that there are neither sets x such that x ∈ x nor sets x and y such that x ∈ y and y ∈ x.
This axiom implies that the system of set theory containing it becomes similar to the theory
of types: one can say that the system ZF with the Axiom of Foundation can be treated as an
extension of the (cumulative) theory of types to the trans�nite types described in a simpler
language than it was the case by Russell.

It should be noticed that von Neumann was one of the �rst who investigated metatheo-
retical properties of the axiomatic set theory. In particular he studied his own system from
the point of view of the categoricity (1925) and of the relative consistency (1929). Probably
he was also the �rst author who called attention to the Skolem paradox. According to von
Neumann this paradox stamps axiomatic set theory �with the mark of unreality� and gives
reasons to �entertain reservations� about it (cf. 1925).

Von Neumann wrote about the proof of the relative consistency of his system of set theory
in the paper �Über eine Widerspruchsfreiheitsfrage der axiomatischen Mengenlehre� (1929).
He saw main di�culties in the axiom (∗). Therefore he considered two axiomatic systems:

7In fact it was for the �rst time discussed by Mirimano� and Skolem it was just von Neumann who as
the �rst formulated it explicitely.
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system S which was his original system (hence with the axiom (∗)) and the system S∗ which
was von Neumann's system but with the Axiom of Replacement and the Axiom of Choice
instead of the axiom (∗). In the paper (1929) he proved that:

1. S∗ will remain consistent if one adds the Axiom of Foundation and does not admit
urlements,

2. S∗ is a subsystem of such a system.

Hence von Neumenn proved the relative consistency of the Axiom of Foundation with respect
to the system S∗. It was in fact the �rst signi�cant metatheoretical result on set theory.

It is worth saying that in (1929) von Neumann developed the cumulative hierarchy in
technical details. Using the Axiom of Foundation and the ordinal numbers he showed that
the universe of sets can be divided into �levels� indexed by ordinal numbers. He introduced
the notion of a rank of a set: a rank of a set x is the smallest ordinal number α such that
the set x appears at the level α. This hierarchy is cumulative, i.e., lower levels are included
in higher ones. The hierarchy can be precisely de�ned as follows:

V0 = ∅,
Vα+1 = Vα ∪ P(Vα),

Vλ =
⋃

α<λ

Vα for λ ∈ lim,

V =
⋃

α∈On

Vα,

rank(x) = µα(x ∈ Vα).

It is worth adding here that von Neumann treated the Axiom of Foundation rather as a
tool in the metatheoretical investigations of set theory.

We are talking the whole time about axioms of set theory but no axioms have been given
so far. It is time to do it!

Let us start by stating that the main idea underlying von Neumann's system of set
theory has been accepted with enthusiasm � in fact it provided a remedium to too drastic
restrictions put on objects of set theory by the system ZF of Zermelo-Fraenkel (one was
convinced that such strong restrictions are not needed in order to eliminate paradoxes; on
the other hand the restrictions put by ZF made the development of mathematics within
ZF very di�cult and unnatural). Nevertheless the system of von Neumann was not very
popular among specialists � the reason was the fact that it was rather counter-intuitive
and was based on a rather di�cult notions (recall that the primitive notion of a function
instead of the notion of a set was used there). Hence the need of reformulating the original
system. That has been done by Paul Bernays: in (1937) he announced the foundations, and
in a series of papers published in the period 1937�1958 (cf. 1937, 1941, 1942, 1958) he gave
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an extensive axiomatic system of set theory which realized the ideas of von Neumann and
simultaneously he suceeded to formulate his system in a language close to the language of
the system ZF.

In (1937) he wrote:

The purpose of modifying the von Neumann system is to remain nearer to the
structure of the original Zermelo system and to utilize at the same time some
of the set-theoretic concepts of the Schröder logic and of Principia Mathema-
tica which have become familiar to logicians. As will be seen, a considerable
simpli�cation results from this arrangement.

The universe of set theory consists by Bernays of two parts:

• sets denoted by x, y, z, . . .,

• classes denoted by A,B,C, . . .

Hence it is not an elementary system! There are two primitive notions: ∈ (= to be an element
of (to belong to) a set) and η (= to be an element (to belong to) a class). Hence one has
two types of atomic formulas: x ∈ y and xηA. There are also two groups of axioms: axioms
about sets (they are analogous to axioms of Zermelo) and axioms characterizing classes.
The very important feature of Bernays' axioms is the fact that there are only �nitely many
axioms and there are no axiom schemes.

In a work devoted to the consistency of the Axiom of Choice and of the Generalized
Continuum Hypothesis K. Gödel gave an axiomatic system of set theory which is in fact a
modi�cation of Bernays' system. Its main advantage is that it is an elementary system (i.e.,
it contains only one type of variables).8

Let us describe now in details the system NBG of Gödel. It is based on the idea that the
variables vary over classes. Among classes we distinguish those classes that are elements of
other classes. They are called sets and their totality is denoted by V . The remaining classes
are called proper classes.

De�ne the class V as follows

x ∈ V ←→ (∃y)(x ∈ y).

Hence x is a set if and only if there exists a class y such that x ∈ y. De�ne also a notion of
a function in the following way:

Func(r) ←→ ∀x∀y∀z[(x, y) ∈ r ∧ (x, z) ∈ r −→ y = z].

The system NBG is based on the following nonlogical axioms:
8It is worth noting here that the idea of using in the system of von Neumann � Bernays only one type

of variables and one membership relation is due to Alfred Tarski � cf. (Mostowski, 1939, p. 208) and
(Mostowski, 1949, p. 144).
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• (Extensionality)
∀x ∀y [∀z(z ∈ x ←→ z ∈ y) −→ x = y],

• (Axiom of Classes)
∃x ∀y [∃z(y ∈ z) −→ y ∈ x],

• (Axiom of the Empty Set)

∃x [∀y (y 6∈ x) ∧ ∃z (x ∈ z)],

• (Pairing Axiom)

∀x ∈ V ∀y ∈ V ∃z ∈ V [∀u(u ∈ z ←→ u = x ∨ u = y)],

• (Axiom Scheme of Class Existence) if Φ is a formula with free variables v1, . . . , vn, then
the following formula

∀v1, . . . , vn ∈ V ∃z ∀x [x ∈ z ←→ (x ∈ V ∧ Φ(V )(x, v1, v2, . . . , vn))]

is an axiom (note that one cannot quanti�er in Φ over class variables!); Φ(V ) denotes
the relativization of Φ to the class V ,

• (Axiom of Union)

∀x ∈ V ∃y ∈ V ∀u [u ∈ y ←→ ∃v(u ∈ v ∧ v ∈ x)],

• (Power Set Axiom)
∀x ∈ V ∃y ∈ V ∀u (u ∈ y ←→ u ⊆ x),

• (In�nity Axiom)

∃x ∈ V [∅ ∈ x ∧ ∀u ∈ x ∀v ∈ x (u ∪ {v} ∈ x)],

• (Axiom of Replacement)

∀x ∈ V ∀r [Func(r) −→ ∃y ∈ V ∀u (u ∈ y ←→ ∃v ∈ x ((v, u) ∈ r)],

• (Axiom of Foundation)

∀x[x 6= ∅ −→ ∃y ∈ x (x ∩ y = ∅)].

9



We one adds to this system the following Axiom of Global Choice (in a strong version):

∃x[Func(x) ∧ ∀y ∈ V [y 6= ∅ −→ ∃z(z ∈ y ∧ (y, z) ∈ x)]]

then one obtains the system denoted as NBGC.
It has turned out that the axiom scheme of class existence can be replaced by the following

(�nitely many!) axioms:

∃a ∀x, y ∈ V [(x, y) ∈ a ←→ x ∈ y]

(it says that a jest a graph of the membership relation ∈ for sets),

∀a ∀b ∃c ∀x[x ∈ c ←→ (x ∈ a ∧ x ∈ b)]

(it de�nes the intersection of classes),

∀a ∃b ∀x ∈ V [x ∈ b ←→ x 6∈ a]

(it de�nes the complement of a class),

∀a ∃b ∀x ∈ V [x ∈ b ←→ ∃y ∈ V ((x, y) ∈ a)]

(it de�nes the left domain of a relation),

∀a ∃b ∀x, y ∈ V [(x, y) ∈ b ←→ x ∈ a),

∀a ∃b ∀x, y, z ∈ V [(x, y, z) ∈ b ←→ (y, z, x) ∈ a],

∀a ∃b ∀x, y, z ∈ V [(x, y, z) ∈ b ←→ (x, z, y) ∈ a].

The systems NBG and NBGC have very nice metamathematical properties, in particular:

• NBG (NBGC) is �nitely axiomatizable (observe that the Zermelo-Fraenkel system ZF
is not �nitely axiomatizable!),

• NBG is a conservative extension of ZF with respect to formulas saying about sets, i.e.,
for any formula ϕ of the language of set theory:

ZF ` ϕ if and only if NBG ` ϕ(V )

where ϕ(V ) denotes the relativization of ϕ to the class V of all sets (and similarly for
NBGC and ZFC where the latter symbol denotes the theory ZF plus the Axiom of
Choice AC),

• NBG is consistent if and only if ZF is consistent (and similarly for NBGC and ZFC).
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3 Consistency proof for arithmetic
One of the main aims of Hilbert's programme was the consistency proof (by save �nitary
methods) for the whole classical mathematics. Students of Hilbert took this task and soon
�rst partial results appeared. The �rst work in this direction was the paper by Wilhelm
Ackermann (1924) where he gave a �nitistic proof of the consistency of arithmetic of natural
numbers without the axiom (scheme) of induction.9

Next attempt to solve the problem of the consistency was the paper �Zur Hilbertschen
Beweistheorie� (1927) by von Neumann. He used another formalism than that in (Acker-
mann, 1924) and, similarly as Ackermann, proved in fact the consistency of a fragment of
arithmetic of natural numbers obtained by putting some restrictions on the induction. We
cannot consider here the (complicated) technical details of von Neumann's proof. It is worth
mentioning that in the introductory section of von Neumann's (1927) a nice and precise
formulation of aims and methods of Hilbert's proof theory was given. It indicated how was
at that time the state of a�airs and how Hilbert's programme was understood. Therefore
we shall quote the appropriate passages.

Von Neumann writes that the essential tasks of proof theory are (cf. von Neumann, 1927,
256�257):

I. First of all one wants to give a proof of the consistency of the classical
mathematics. Under `classical mathematics' one means the mathematics in
the sense in which it was understood before the begin of the criticism of set
theory. All settheoretic methods essentially belong to it but not the proper
abstract set theory. [. . . ]

II. To this end the whole language and proving machinary of the classical math-
ematics should be formalized in an absolutely strong way. The formalism
cannot be too narrow.

III. Then one must prove the consistency of this system, i.e., one should show
that certain formulas of the formalism just described can never be �proved�.

IV. One should always strongly distinguish here between various types of �prov-
ing�: between formal (�mathematical�) proving in a given formal system
and contents (�metamathematical�) proving [of statements] about the sys-
tem. Whereas the former one is an arbitrarily de�ned logical game (which
should to a large extent be analogues to the classical mathematics), the
latter is a chain of directly evident contents insights. Hence this �contents
proving� must proceed according to the intuitionistic logic of Brouwer and

9In fact it was a much weaker system than the usual system of arithmetic but the paper provided the �rst
attempt to solve the problem of consistency. Later in the paper (1940) Ackermann proved the consistency of
the full arithmetic of natural numbers by using methods from his paper (1924) and the trans�nite induction.
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Weyl. Proof theory should so to speak construct classical mathematics on
the intuitionistic base and in this way lead the strict intuitionism ad absur-
dum.10

Note that von Neumann identi�es here �nitistic methods with intuitionistic ones. This
was then current among members of the Hilbert's school. The distinction between those two
notions was to be made explicit a few years later � cf. (Hilbert and Bernays, 1934, pp. 34
and 43) and (Bernays 1934, 1935, 1941a), see also (Murawski, 2001).

As an interesting detail let us add that on the paper (1927) by von Neumann reacted
critically Stanisªaw Le±niewski publishing the paper �Grundzüge eines neuen Systems der
Grundlagen der Mathematik� (1929) in which he critically analyzed various attempts to for-
malize logic and mathematics. Le±niewski among others expresses there his doubts concern-
ing the meaning and signi�cance of von Neumann's proof of the consistency of (a fragment of)
arithmetic and constructs � to maintain his thesis � a �counterexample�, namely he deduce
(on the basis of von Neumann's system) two formulas a and ¬a, hence an inconsistency.

Von Neumann answered to Le±niewski's objections in the paper �Bemerkungen zu den
Ausführungen von Herrn St. Le±niewski über meine Arbeit `Zur Hilbertschen Beweistheo-
rie' �(1931). Analyzing the objections of Le±niewski he came to the conclusion that there
is in fact a misunderstanding resulting from various ways in which they both understand
principles of formalization. He used also the occasion to ful�l the gap in his paper (1927).

Add also that looking for a proof of the consistency of the classical mathematics and
being (still) convinced of the possibility of �nding such a proof (in particular a proof of the
consistency of the theory of real numbers) von Neumann doubted whether there are any
chances to �nd such a proof for the set theory � cf. his paper (1929).

10I. In erster Linie wird der Nachweis der Widerspruchsfreiheit der klassischen Mathematik angestrebt.
Unter �klassischer Mathematik� wird dabei die Mathematik in demjenigen Sinne verstanden, wie sie bis zum
Auftreten der Kritiker der Mengenlehre anerkannt war. Alle mengentheoretischen Methoden gehören im
wesentlichen zu ihr, nicht aber die eigentliche abstrakte Mengenlehre. [. . . ]

II. Zu diesem Zwecke muÿ der ganze Aussagen- und Beweisapparat der klassischen Mathematik absolut
streng formalisiert werden. Der Formalismus darf keinesfalls zu eng sein.

III. Sodann muÿ die Widerspruchsfreiheit dieses Systems nachgewiesen werden, d.h. es muÿ gezeigt wer-
den, daÿ gewisse Aussagen �Formeln� innerhalb des beschriebenen Formalismus niemals �bewiesen� werden
können.

IV. Hierbei muÿ stets scharf zwischen verschiedenen Arten des �Beweisens� unterschieden werden: Dem
formalistischen (�mathematischen�) Beweisen innerhalb des formalen Systems, und dem inhaltlichen (�meta-
mathematischen�) Beweisen über das System. Während das erstere ein willkürlich de�niertes logisches Spiel
ist (das freilich mit der klassischen Mathematik weitgehend analog sein muÿ), ist das letztere eine Verket-
tung unmittelbar evidenter inhaltlicher Einsichten. Dieses �inhaltliche Beweisen� muÿ also ganz im Sinne der
Brouwer-Weylschen intuitionistischen Logik verlaufen: Die Beweistheorie soll sozusagen auf intuitionistischer
Basis die klassische Mathematik aufbauen und den strikten Intuitionismus so ad absurdum führen.
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4 Von Neumann and Gödel's second incompleteness the-
orem

How much von Neumann was engaged in the realization of Hilbert's programme and how
high was his position in this group can be judged from the fact that just he has been invited
by the organizers of the Second Conference on the Epistemology of Exact Sciences (organized
by Die Gesellschaft für Empirische Philosophie)11 held in Königsberg, 5�7th September 1930,
to give a lecture presenting formalism � one of the three main trends in the contemporary
philosophy of mathematics and the foundations of mathematics founded by Hilbert. The
other two main trends: logicism and intuitionism were presented by Rudolf Carnap and
Arend Heyting, resp.

In his lecture �Die formalistische Grundlegung der Mathematik�(cf. 1931a) von Neumann
recalled basic presuppositions of Hilbert's programme and claimed that thanks to the works
of Russell and his school a signi�cant part of the tasks put by Hilbert has already been
realized. In fact the unique task that should be ful�lled now is �to �nd a �nitistically
combinatorial proof of the consistency of the classical mathematics�. And he added that
this task turned out to be di�cult. On the other hand, partial results obtained so far by
W. Ackermann, H. Weyl and himself make possible to cherish hopes that it can be realized.
He �nished his lecture by saying: �Whether this can be done for a more di�cult and more
important system of [the whole] classical mathematics will show the future.�

On the last day of the conference, i.e., on 7th September 1930, a young Austrian mathe-
matician Kurt Gödel announced his recent (not yet published) results on the incompleteness
of the system of arithmetic of natural numbers and richer systems.

It seems that the only participant of the conference in Königsberg who immediately
grasped the meaning of Gödel's theorem and understood it was von Neumann. After Gödel's
talk he had a long discussion with him and asked him about details of the proof. Soon after
coming back from the conference to Berlin he wrote a letter to Gödel (on 20th November
1930) in which he announced that he had received a remarkable corollary from Gödel's
First Theorem, namely a theorem on the unprovability of the consistency of arithmetic in
arithmetic itself. In the meantime Gödel developed his Second Incompleteness Theorem and
included it in his paper �Über formal unentscheidbare Sätze der `Principia Mathematica'
und verwandter Systeme. I� (cf. Gödel, 1931). In this situation von Neumann decided to
leave the priority of the discovery to Gödel.

11This conference was organized together with the 91st Convention of the Society of German Scientists
and Physicians (Gesellschaft deutscher Naturforscher und Ärzte) and the 6th Conference of German Math-
ematicians and Physicists (Deutsche Physiker- und Mathematikertagung).
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5 Concluding remarks
Gödel's incompleteness results had great in�uence on von Neumann's views towards the
perspectives of investigations on the foundations of mathematics. He claimed that �Gödel's
result has shown the unrealizability of Hilbert's program� and that �there is no more reason
to reject intuitionism� (cf. his leter to Carnap of 6th June 1931 � see Mancosu, 1999,
39�41). He added in this letter:

Therefore I consider the state of the foundational discussion in Königsberg to
be outdated, for Gödel's fundamental discoveries have brought the question to
a completely di�erent level. (I know that Gödel is much more careful in the
evoluation of his results, but in my opinion on this point he does not see the
connections correctly).

Incompleteness results of Gödel changed the opinions cherished by von Neumann and
convinced him that the programme of Hilbert cannot be realized. In the paper �The Math-
ematician�(1947) he wrote:

My personal opinion, which is shared by many others, is, that Gödel has shown
that Hilbert's program is essentially hopeless.

Another reason for the disappointment of von Neumann's with the investigations in the
foundations of mathematics could be the fact that he became aware of the lack of categoricity
of set theory, i.e., that there exist various nonisomorphic models of set theory. The latter
fact implies that it is impossible to describe the world of mathematics in a unique way. In
fact there is no absolute description, all descriptions are relative.

Not only von Neumman was aware of this feature of set theory. Also Fraenkel and Thoralf
Skolem realized this. And they have proposed various measures. In particular Fraenkel in
his very �rst article �Über die Zermelosche Begründung der Mengenlehre� (1921) sought
to render set theory categorical by introducing his Axiom of Restriction, inverse to the
completeness axiom that Hilbert had proposed for geometry in 1899. Whereas Hilbert had
postulated the existence of a maximal model satisfying his other axioms, Fraenkel's Axiom
of Restriction asserted that the only sets to exist were those whose existence was implied by
Zermelo's axioms and by the Axiom of Replacement. In particular, there were no urelements.
One should add that Fraenkel did not distinguish properly a language and a metalanguage
and confused them.

The approach of Skolem was di�erent � but we will not go into technical details here.12
Von Neumann also examined the possible categoricity of set theory. In order to render

it as likely as possible that his own system was categorical, he went beyond Mirimano�
12See, e.g., Moore, 1982, Section 4.9.
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and augmented it by the axiom stating that there are no in�nite descending ∈-sequences.
He recognized that his system would surely lack categoricity unless he excluded weakly
inaccessible cardinals (i.e., regular cardinals with an index being a limit ordinal). Von
Neumann rejected also the Fraenkel's Axiom of Restriction as untenable because it relied on
the concept of subdomain and hence on inconsistent �naïve� set theory. He was also aware
of the di�culties implied by Löwenheim-Skolem theorem.

Von Neumann treated the lack of categoricity of set theory, certain relativism of it as an
argument in favor of intuitionism (cf. his 1925). He stressed also the distance between the
naïve and the formalized set theory and called attention to the arbitrariness of restrictions
introduced in axiomatic set theory (cf. 1925, 1928a, 1929). He saw also no rescue and no
hope in Hilbert's programme and his proof theory � in fact the latter was concerned with
consistency and not with categoricity.

One should notice here that von Neumann's analyses lacked a clear understanding of
the di�erence and divergence between �rst-order and second-order logic and their e�ects on
categoricity. Today it is known, e.g., that Hilbert's axioms for Euclidian geometry and for
the real numbers as well as Dedekind-Peano axioms for the arithmetic of natural numbers
are categorical in second-order logic and non-categoric in the �rst-order logic. Only Zermelo
(perhaps under the in�uence of Hilbert13) claimed that the �rst-order logic is insu�cent for
mathematics, and in particular for set theory. It became the dominant element in Zermelo's
publications from the period 1929�1935. It is worth noting here that he spoke about this for
the �rst time in his lectures held in Warsaw in May and June 1929.

After 1931 von Neumann ceased publishing on the mathematical logic and the founda-
tions of mathematics � he came to the conclusion that a mathematician should devote his
attention to problems connected with the applications. In (1947) he wrote:

As a mathematical discipline travels far from its empirical source, or still more, if
it is a second and third generation only indirectly inspired by ideas coming from
�reality�, it is beset with very grave dangers. It becomes more and more purely
aestheticizing, more and more purely l'art pour l'art. [. . . ] In other words, at a
great distance from its empirical source, or after much �abstract� inbreeding, a
mathematical subject is in danger of degeneration.

13Hilbert and Ackermann wrote in (1928): �As soon as the object of investigation becomes the foundation
of . . . mathematical theories, as soon as we went to determine in what relation the theory stands to logic
and to what extent it can be obtained from purely logical operations and concepts, then second-order logic
is essential.� In particular they de�ned the set-theoretic concept of well-ordering by means of second-order,
rather than �rst-order, logic.
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